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Figure 1: Given a single reference image (rounded rectangle), our method RB-Modulation offers a
plug-and-play solution for (a) stylization, and (b) content-style composition with various prompts
while maintaining sample diversity and prompt alignment. For instance, given a reference style image
(e.g. “melting golden 3d rendering style”) and content image (e.g. (A) “dog”), our method adheres
to the desired prompts without leaking contents from the reference style image and without being
restricted to the pose of the reference content image.

Abstract
We propose Reference-Based Modulation (RB-Modulation), a new plug-and-play
solution for training-free personalization of diffusion models. Existing training-
free approaches exhibit difficulties in (a) style extraction from reference images in
the absence of additional style or content text descriptions, (b) unwanted content
leakage from reference style images, and (c) effective composition of style and
content. RB-Modulation is built on a novel stochastic optimal controller where a
style descriptor encodes the desired attributes through a terminal cost. The resulting
drift not only overcomes the difficulties above, but also ensures high fidelity to the
reference style and adheres to the given text prompt. We also introduce a cross-
attention-based feature aggregation scheme that allows RB-Modulation to decouple
content and style from the reference image. With theoretical justification and
empirical evidence, our framework demonstrates precise extraction and control of
content and style in a training-free manner. Further, our method allows a seamless
composition of content and style, which marks a departure from the dependency
on external adapters or ControlNets.
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1 Introduction

Text-to-image (T2I) generative models [1, 2, 3, 4] have excelled in crafting visually appealing images
from text prompts. These T2I models are increasingly employed in creative endeavors such as visual
arts [5], gaming [6], personalized image synthesis [7, 8, 9, 10], stylized rendering [11, 12, 13, 14],
and image inversion or editing [15, 16, 17, 18]. Content creators often need precise control over
both the content and the style of generated images to match their vision. While the content of an
image can be conveyed through text, articulating an artist’s unique style – characterized by distinct
brushstrokes, color palette, material, and texture – is substantially more nuanced and complex. This
has led to research on personalization through visual prompting [11, 12, 13].

Recent studies have focused on finetuning pre-trained T2I models to learn style from a set of reference
images [19, 7, 11, 9]. This involves optimizing the model’s text embeddings, model weights, or
both, using the denoising diffusion loss. However, these methods demand substantial computational
resources for training or finetuning large-scale foundation models, thus making them expensive to
adapt to new, unseen styles. Furthermore, these methods often depend on human-curated images
of the same style, which is less practical and can compromise quality when only a single reference
image is available.

In training-free stylization, recent methods [12, 13, 14] manipulate keys and values within the
attention layers using just one reference style image. These methods face challenges in both extracting
the style from the reference style image and accurately transferring the style to a target content image.
For instance, during the DDIM inversion step [20] utilized by StyleAligned [12], fine-grained details
tend to be compromised. To mitigate this issue, InstantStyle [13] incorporates features from the
reference style image into specific layers of a previously trained IP-Adapter [21]. However, identifying
the exact layer for feature injection in a model is complex and not universally applicable across
models. Also, feature injection can cause content leakage from the style image into the generated
content. Moving on to content-style composition, InstantStyle [13] employs a ControlNet [22] (an
additionally trained network) to preserve image layout, which inadvertently limits its diversity.

We introduce Reference-Based Modulation (RB-Modulation), a novel approach for content and style
personalization that eliminates the need for training or finetuning diffusion models (e.g. Control-
Net [22] or adapters [21, 9]). Our work reveals that the reverse dynamics in diffusion models can be
formulated as stochastic optimal control with a terminal cost. By incorporating style features into
the controller’s terminal cost, we modulate the drift field in diffusion models’ reverse dynamics, en-
abling training-free personalization. Unlike conventional attention processors that often leak content
from the reference style image, we propose to enhance the image fidelity via an Attention Feature
Aggregation (AFA) module that decouples content from reference style image. We demonstrate the
effectiveness of our method in stylization [12, 13, 14] and style+content composition, as illustrated in
Fig. 1(a) and (b), respectively. Our experiments show that RB-Modulation outperforms current SoTA
methods [12, 13] in terms of human preference and prompt-alignment metrics.

Our contributions are summarized as follows:

• We present reference-based modulation (RB-Modulation), a novel stochastic optimal control
framework that enables training-free, personalized style and content control, with a new
Attention Feature Aggregation (AFA) module to maintain high fidelity to the reference
image while adhering to the given prompt (§4).

• We provide theoretical justifications connecting optimal control and reverse diffusion dy-
namics. We leverage this connection to incorporate desired attributes (e.g., style) in our
controller’s terminal cost and personalize T2I models in a training-free manner (§5).

• We perform extensive experiments covering stylization and content-style composition,
demonstrating superior performance over SoTA methods in human preference metrics (§6).

2 Related Work

Personalization of T2I models: T2I generative models [3, 23, 24] are pushing the boundaries in
generating aesthetically pleasing images by precisely interpreting text prompts. Their ability to follow
a desired text has unlocked new avenues in personalized content creation, including text-guided
image editing [17, 18], solving inverse problems [16, 17], concept-driven generation [7, 25, 26,
27], personalized outpainting [28], identity-preservation [29, 8, 30], and stylized synthesis [11, 13,
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12, 10]. To tailor T2I models for a specific style (e.g., painting) or content (e.g., object), existing
methods follow one of two recipes: (1) full finetuning (FT) [7, 31] or parameter efficient finetuning
(PEFT) [26, 21, 9, 11, 10] and (2) training(finetuning)-free [12, 13, 14], which we discuss below.

Finetuning T2I models for personalization: FT [7, 31] and PEFT [26, 21, 9, 11, 10] methods,
such as IP-Adapter [21], LoRA [9], ZipLoRA [10], and StyleDrop [11], excel at capturing style or
object details when the underlying T2I model is finetuned on a few (typically 4) reference images
for few thousand iterations. With the increasing size of T2I models, PEFT is preferred over FT due
to fewer trainable parameters. However, the challenge of curating a set of reference images and
resource-intensive finetuning for every style or content remains largely unexplored.

Training(finetuning)-free T2I models for personalization: The need to improve T2I model finetun-
ing has sparked interests in training-free personalization methods. In StyleAligned [12], a reference
style image and a text prompt describing the style are used to extract style features via DDIM inversion
[20]. Target queries and keys are then normalized using adaptive instance normalization [32] based
on reference counterparts. Finally, reference image keys and values are merged with DDIM-inverted
latents in self-attention layers, which tends to leak content information from the reference style image
(Figure 3). Moreover, the need for textual description in the DDIM inversion step can degrade its
performance. Swapping Self-Attention (SSA) [14] addresses these limitations by replacing the
target keys and values in self-attention layers with those from a reference style image. Yet, it still
relies on DDIM inversion to cache keys and values of the reference style, which tends to compromise
fine-grained details [13]. Both StyleAligned [12] and SSA [14] require two reverse processes to
share their attention layer features and thus demand significant memory. Recently, InstantStyle [13]
injects reference style features into specific cross-attention layers of IP-Adapter [21], addressing two
key limitations: DDIM inversion and memory-intensive reverse processes. However, pinpointing
the exact layers for feature injection is complex, and they may not generalize to other models. In
addition, when composing style and content, InstantStyle [13] relies on ControlNet [22], which can
limit the diversity of generated images to fixed layouts and deviate from the prompt.

Optimal Control: Stochastic optimal control finds wide applications in diverse fields such as
molecular dynamics [33], economics [34], non-convex optimization [35], robotics [36], and mean-
field games [37] Despite its extensive use, it has been less explored in personalizing diffusion models.
In this paper, we introduce a novel framework leveraging the main concepts from optimal control to
achieve training-free personalization. A key aspect of optimal control is designing a controller to
guide a stochastic process towards a desired terminal condition [34]. This aligns with our goal of
training-free personalization, as we target a specific style or content at the end of the reverse diffusion
process, which can be incorporated in the controller’s terminal condition.

RB-Modulation overcomes several challenges encountered by SoTA methods [12, 14, 13]. Since RB-
Modulation does not require DDIM inversion, it retains fine-grained details unlike StyleAligned [12].
Using a stochastic controller to refine the trajectory of a single reverse process, it overcomes the limita-
tion of coupled reverse processes [12]. By incorporating a style descriptor in our controller’s terminal
cost, it eliminates the dependency on Adapters [21, 9] or ControlNets [22] by InstantStyle [13].

3 Preliminaries

Diffusion models consist of two stochastic processes: (a) noising process, modeled by a Stochastic
Differential Equation (SDE) known as forward-SDE: dXt = f(Xt, t) dt+ g(Xt, t) dWt, X0 ∼ p0,
and (b) denoising process, modeled by the time-reversal of forward-SDE under mild regularity
conditions [38], also known as reverse-SDE:

dXt =
[
f(Xt, t)− g2(Xt, t)∇ log p(Xt, t)

]
dt+ g(Xt, t) dWt, X1 ∼ N (0, Id) . (1)

Here, W = (Wt)t≥0 is standard Brownian motion in a filtered probability space, (Ω,F , (Ft)t≥0,P),
p(·, t) denotes the marginal density of p at time t, and ∇ log pt(·) the corresponding score function.
f(Xt, t) and g(Xt, t) are called drift and volatility, respectively. A popular choice of f(Xt, t) = −Xt

and g(Xt, t) =
√
2 corresponds to the well-known forward Ornstein-Uhlenbeck (OU) process.

For T2I generation, the reverse-SDE (1) is simulated using a neural network s (xt, t; θ) [39, 40]
to approximate ∇x log p(xt, t). Importantly, to accelerate the sampling process in practice [20,
41, 42], the reverse-SDE (1) shares the same path measure with a probability flow ODE: dXt =[
f(Xt, t)− 1

2g
2(Xt, t)∇ log p(Xt, t)

]
dt, where X1 ∼ N (0, Id).
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Personalized diffusion models either fully finetune θ of s (xt, t; θ) [7, 31], or train a parameter-
efficient adapter ∆θ for s (xt, t; θ +∆θ) on reference style images [9, 11, 10]. Our method does not
finetune θ or train ∆θ. Instead, we derive a new drift field through a stochastic optimal controller that
modulates the drift of the standard reverse-SDE (1).

4 Method

Personalization using optimal control: Normalize time t by the total number of diffusion steps T
such that 0 ≤ t ≤ 1. Let us denote by u : Rd × [0, 1] → Rd a controller from the admissible set
of controls U ⊆ Rd, Xu

t ∈ Rd a state variable, ℓ : Rd × Rd × [0, 1] → R the transient cost, and
h : Rd → R the terminal cost of the reverse process (Xu

t )
0
t=1. We show in §5 that training-free

personalization can be formulated as a control problem where the drift of the standard reverse-SDE (1)
is modified via RB-modulation:

min
u∈U

E[
∫ 0

1

ℓ (Xu
t , u(X

u
t , t), t) dt+ γh(Xu

0 )], where (2)

dXu
t =

[
f(Xu

t , t)− g2(Xu
t , t)∇ log p(Xu

t , t) + u(Xu
t , t)

]
dt+ g(Xu

t , t)dWt, X
u
1 ∼ N (0, Id) .

Importantly, the terminal cost h(·), weighted by γ, captures the discrepancy in feature space between
the styles of the reference image and the generated image. The resulting controller u(·, t) modulates
the drift over time to satisfy this terminal cost. We derive the solution to this optimal control problem
through the Hamilton-Jacobi-Bellman (HJB) equation [34]; refer to Appendix A for details. Our
proposed RB-Modulation Algorithm 1 has two key components: (a) stochastic optimal controller
and (b) attention feature aggregation. Below, we discuss each in turn.

(a) Stochastic Optimal Controller (SOC): We show that the reverse dynamics in diffusion models
can be framed as a stochastic optimal control problem with a quadratic terminal cost (theoretical
analysis in §5). For personalization using a reference style image Xf

0 = z0, we use a Consistent
Style Descriptor (CSD) [43] to extract style features Ψ(Xf

0 ). Since the score functions s (xt, t; θ)≈
∇ log p (Xt, t) are available from pre-trained diffusion models [23, 24], our goal is to add a correction
term u(·, t) to modulate the reverse-SDE and minimize the overall cost (2). We approximate Xu

0
with its conditional expectation using Tweedie’s formula [16, 17]. Finally, we incorporate the style
features into our controller’s terminal cost as: h (Xu

0 ) = ∥Ψ(Xf
0 )−Ψ(E [Xu

0 |Xu
t ])∥22.

Our theoretical results (§5) suggest that the optimal controller can be obtained by solving the
HJB equation and letting γ → ∞. In practice, this translates to dropping the transient cost
ℓ (Xu

t , u(X
u
t , t), t) and solving (2) with only the terminal constraint, i.e.,

min
u∈U
∥Ψ(Xf

0 )−Ψ(E [Xu
0 |Xu

t ])∥22. (3)

Thus, we solve (3) to find the optimal control u and use this controller in the reverse dynamics (2) to
update the current state from Xu

t to Xu
t−∆t (recall that time flows backwards in the reverse-SDE (1)).

Our implementation of (3) is given in Algorithm 1, which follows from our theoretical insights.

Implementation challenge: For smaller generative models [3], we can directly solve our control
problem (3). However, for larger models [23, 24], optimizing our control objective (3) requires
back propagation through the score network s (xt, t; θ) with tentatively billions of parameters. This
significantly increases time and memory complexity [16, 17].

We propose a proximal gradient descent approach to address this challenge. Recall that the key
ingredient of our Algorithm 1 is to find the previous state Xt−∆t by modulating the current state
Xt based on an optimal controller u∗. The optimal controller u∗ is obtained by minimizing the
discrepancy in style between X̄u

0 := E[Xu
0 |Xu

t = xt], obtained using our controlled reverse-SDE (3),
and the reference style image z0. Motivated by this interpretation, an alternate Algorithm 2 (see
Appendix B.2) avoids back propagation through s(xt, t; θ) by introducing a dummy variable x0,
which serves as a proxy for X̄u

0 in the terminal cost. Instead of forcing x0 to be decided by the
dynamics of the reverse-SDE as in Algorithm 1, we allow it to be only approximately faithful to the
dynamics. This is implemented by adding a proximal penalty, i.e. x∗0 = argminx0∈Rd∥Ψ(Xf

0 ) −
Ψ(x0)∥22+λ∥x0−E [Xu

0 |Xu
t ]∥22, where the hyper-parameter λ controls the faithfulness of the reverse

dynamics. This penalty assumes that with a small step-size in the reverse-SDE dynamics (3), x∗0
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Algorithm 1: Reference-Based Modulation
Input: Diffusion steps T , reference prompt p, reference image

z0, style descriptor Ψ(·), score network s(·, ·, ·; θ)
Tunable parameter: Stepsize η, optimization steps M
Output: Personalized latent Xu

0
1 Initialize xT ← N (0, Id)
2 for t = T to 1 do
3 Initialize controller u = 0
4 for m = 1 to M do
5 x̂t = xt + u ▷ controlled state

6 X̄u
0 =

x̂t√
ᾱt

+
(1−ᾱt)√

ᾱt
s (x̂t, t,p; θ)

7 h(X̄u
0 ) = ∥Ψ(z0)−Ψ(X̄u

0 )∥22 using Eq. (3)
8 u = u− η∇uh(X̄

u
0 ) ▷ update controller

9 end
10 x∗

t = xt + u ▷ optimally controlled state

11 X̄u
0 =

x∗
t√
ᾱt

+
(1−ᾱt)√

ᾱt
s (x∗

t , t,p; θ) ▷ terminal state

12 xt−1 ← DDIM(X̄u
0 ,x∗

t ) ▷ one step reverse-SDE [20]
13 end
14 return Xu

0
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Figure 2: Attention Feature Aggregation
(AFA): Within the cross-attention layers, the
keys and values from the previous layers (K,V ),
text embedding (Kp,Vp), reference style image
(Ks,Vs) and reference content image (Kc,Vc) are
concatenated and processed separately to disen-
tangle the information, which is followed by an
averaging layer for the output. Kc,Vc and only
used for content-style composition.

and E[Xu
0 |Xu

t = xt] will be close. Therefore, Algorithm 2 enables personalization of large-scale
foundation models without significantly increasing time and memory complexity.

(b) Attention Feature Aggregation (AFA): Transformer-based diffusion models [3, 23, 24] consist
of self-attention and cross-attention layers operating on latent embedding xt ∈ Rd×nh . Within the
attention module Attention(Q,K, V ), xt is projected into queries Q ∈ Rd×nq , keys K ∈ Rd×nq ,
and values V ∈ Rd×nh using linear projections. Through Q, K, and V , attention layers capture
global context and improve long-range dependencies within xt.

To accommodate a reference image (e.g., style or content) while retaining prompt-alignment, we
propose an Attention Feature Aggregation (AFA) module, as illustrated in Figure 2. For a given
prompt p, a reference style image Is, and a reference content image Ic, we first extract the embeddings
using CLIP [44] text and image encoder, respectively. Then, we project these embeddings into keys
and values using linear projection layers. We denote by Kp and Vp the keys and values from p, Ks

and Vs from Is, Kc and Vc from Ic (used only in content-style composition). The query Q is obtained
from a linear projection of xt, and remains the same in the AFA module. By processing the keys and
values separately, we disentangle their relative importance with respect to the state variable. This
ensures that the attention maps from text are not contaminated with attention maps from style. To
make the text consistent with the style, we also compose the keys and values of both text and style in
our attention processor. The final output of our AFA module is given by

AFA = Avg (Atext, Astyle, Atext+style) , Atext = Attention(Q, [K;Kp], [V ;Vp]),

Astyle = Attention(Q, [K;Ks], [V ;Vs]), Atext+style = Attention(Q, [K;Kp;Ks], [V ;Vp;Vs]),

where [K;Kp] ∈ R2d×nq indicates concatenation of K with Kp along the number of tokens dimen-
sion. For style-content composition, we process the content image Ic in the same way as the reference
style image Is, and obtain another set of attention outputs:

AFA = Avg (Atext, Astyle, Acontent, Acontent+style) ,

Acontent = Attention(Q, [K;Kc], [V ;Vc]), Acontent+style = Attention(Q, [K;Ks;Kc], [V ;Vs;Vc]).

Importantly, the AFA module is computationally tractable as it only requires the computation of a
multi-head attention, which is widely used in practice [23].

5 Theoretical Justifications

Problem setup: We outline an approach to derive the optimal controller for a special case of our
control problem (2). We substitute t← 1− t to account for the time reversal in the reverse-SDE (1).
Here, Xu

0 ∼ N (0, Id) and Xu
1 ∼ pdata. We consider the dynamic without the Brownian motion:

dXu
t = v(Xu

t , u, t)dt, Xu
t0 = x0, where 0 ≤ t0 ≤ t ≤ tN ≤ 1 and v : Rd × Rd × [t0, tN ]→ Rd

denotes the drift field. The optimal controller u∗ can be derived by solving the Hamilton-Jacobi-
Bellman (HJB) equation [34, 45], see Appendix A for details.
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Incorporating optimal control in diffusion: Following recent works [46, 47], we consider a
dynamical system whose drift field minimizes a transient trajectory cost and a terminal cost (weighted
by γ) to ensure “closeness” to reference content x1 (Appendix A.1). Proposition A.2 [47] outlines
the optimal control in the limiting setting where γ → ∞. Furthermore, suppose we replace x1

with its conditional expectation (discussed in Remark A.3), the resulting dynamic is the standard
reverse-SDE for the Orstein-Uhlenbeck (OU) diffusion process for a particular noise schedule. This
connection between classic linear quadratic control and the standard reverse-SDE allows us to study
other diffusion problems (e.g., personalization) through the lens of stochastic optimal control. For
instance, we derive the optimal controller given reference style features y1 at the terminal time.

Proposition 5.1. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Given reference style features y1, consider the control problem:

min
u∈U

∫ 1

t0

1

2
∥u(Xu

t , t)∥
2
dt+

γ

2
∥AXu

1 − y1∥22 , where dXu
t = u(Xu

t , t) dt, X
u
t0 = x0.

Then, in the limit when γ →∞, the optimal controller u∗ = (ATA)
−1

AT (y1−Axt)

1−t , which yields the

following controlled dynamic: dXu
t =

(ATA)
−1

AT (y1−Axt)

1−t dt.

Implication. The optimal controller depends on the reference style features y1 at the terminal time,
instead of the image content encoded in x1. To simulate the controlled dynamic in practice, we
use CSD [43] as a style feature extractor and replace y1 with the style features extracted from the
expected terminal state E[Xu

1 |Xu
t ], as discussed in Appendix A.2.

Drift modulation through optimal controller: We then study a control problem where the velocity
field is a linear combination of the state and the control variable. This problem is interesting to
study because the reverse-SDE dynamic of the standard OU process has a drift field of the form:
v (Xt, t) = −Xt − 2∇ log p(Xt, t). For a Gaussian prior X0 ∼ N (0, I), the law of the OU process
satisfies ∇ log p (Xt, t) = −Xt, and the corresponding drift field becomes v (Xt, t) = Xt. Our goal
is to modulate this drift field using a controller u (Xu

t , t). The result below provides the structure of
the optimal control (again in the setting where the terminal objective is known; see Appendix A1).

Proposition 5.2. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Let pt denote ∇xV
∗(x, t) in HJB equation (A.1). Given reference style features y1,

consider the control problem:

min
u∈U

∫ 1

t0

1

2
∥u(Xu

t , t)∥
2
dt+

γ

2
∥AXu

1 − y1∥22 , where dXu
t = [Xu

t + u(Xu
t , t)] dt, X

u
t0 = x0,

Then, the optimal controller becomes u∗(t) = −pt, where the instantaneous state Xu
t = xt and pt

satisfy the following coupled transitions:[
xt

pt

]
=

[
x0e

t − γ
2A

T (Ax1 − y1) e
1+t + γ

2A
T (Ax1 − y1) e

1−t

γAT (Ax1 − y1) e
1−t

]
.

Summary. We build on the connection between optimal control and reverse diffusion (see Ap-
pendices A.1-A.3 for details). The general strategy is to derive the optimal controller with known
terminal state, and then replace the terminal state in the controller with its estimate using Tweedie’s
formula. For stylized models and Gaussian prior, the controllers have an explicit form. However
in practice, the data distribution may not be Gaussian, and thus, we do not aim for a closed-form
expression to modulate the drift. This line of analysis, however, points to our method RB-Modulation.
As discussed in §4, we incorporate a style descriptor in our controller’s terminal cost and numerically
evaluate the resulting drift at each reverse time step either through back propagating through the score
network (Algorithm 1), or an approximation based on proximal gradient updates (Algorithm 2).

6 Experiments

Metrics: Evaluating stylized synthesis is challenging due to the subjective nature of style, making
simple metrics inadequate. We follow a two step approach: first using metrics from prior works
and then conducting human evaluation. To evaluate prompt-image alignment, we use CLIP-T
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Reference style Ours InstantStyle StyleAligned StyleDrop

A crown A crown A crown A crown

A thumbs up A big smiley face An avocado A big smiley face An avocado A big smiley face An avocado A big smiley face An avocado

Snowboard Snowboard Snowboard Snowboard

A piano A rubber duck A villa A rubber duck A villa A rubber duck A villa A rubber duck A villa

A book A book A book A book

A smartphone A glass of wine A dinner table A glass of wine A dinner table A glass of wine A dinner table A glass of wine A dinner table

A dog A dog A dog A dog

A house A lion A temple A lion A temple A lion A temple A lion A temple

Figure 3: Qualitative results for stylization: A comparison with state-of-the-art methods (In-
stantStyle [13], StyleAligned [12], StyleDrop [11]) highlights our advantages in preventing informa-
tion leakage from the reference style and adhering more closely to desired prompts.

score [12, 11, 13] and ImageReward [5], which also consider human aesthetics, distortions, and object
completeness. When a style description is provided, CLIP-T and ImageReward also capture style
alignment. We assess style similarity using DINO [48] and content similarity using CLIP-I [44] as in
prior work [12, 7, 11], and highlight their limitations in disentangling style and content performance
in evaluation. Given the importance of human evaluation in T2I personalization [12, 11, 7, 10, 14], we
also conduct a user study though Amazon Mechanical Turk to measure both style and text alignment.

Datasets and baselines: We use style images from StyleAligned benchmark [12] for stylization and
content images from DreamBooth [7] for content-style composition. We base RB-Modulation on the
recently released StableCascade [24]. We compare our approach with three training-free methods:
InstantStyle [13] (state-of-the-art), IP-Adapter [21], and StyleAligned [12]. For completeness, we
also compare with training-based methods StyleDrop [11] and ZipLoRA [10].

Implementation details: All experiments run on a single A100 NVIDIA GPU. We use the same
hyper-parameters for our method across tasks, and default settings for alternative methods as per their
original papers. Details are provided in Appendix B.1.

6.1 Image Stylization
Qualitative analysis: This section describes image stylization experiments using a text prompt and a
reference style image. Figure 3 compares our method with SoTA training-free InstantStyle [13] and
StyleAligned [12], and training-based StyleDrop [11]. Except for StyleDrop, which requires ∼5
minutes of training per style, all methods, including ours, are training-free and complete inference
in <1 minute. While all methods produce reasonable outputs, alternative methods encounter issues
with information leakage. For instance, in the third row of Figure 3, StyleAligned and StyleDrop
generate a wine bottle and book resembling the smartphone in the reference style image. In the last
row, StyleAligned leaks the house and the background of the reference image; InstantStyle exhibits
color leakage from the house, resulting in similar-colored images. Our method accurately adheres to
the prompt in the desired style. As illustrated in the second and the third row, our method generates
only one glass of wine and a high-fidelity rubber duck, compared to baselines where extra items
appear (wine bottles styled like the left smartphone) or incorrect styles (cartoon-style rubber duck).

User study: To validate the qualitative analysis, we conduct a user study on Amazon Mechanical
Turk with 155 participants using 100 styles from the StyleAligned dataset [12], collecting a total
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Human Ours vs. InstantStyle [13] Ours vs. StyleAligned [12] Ours vs. IP-Adapter [21]
Preference (%) OQ ↑ SA ↑ PA ↑ OQ ↑ SA ↑ PA ↑ OQ ↑ SA ↑ PA ↑
Alternative 39.8 38.5 39.5 24.4 27.8 29.4 8.1 20.1 8.3
Tie 9.3 6.4 7.3 8.8 7.1 5.8 6.9 4.8 4.5
RB-Modulation (ours) 51.0 55.1 53.3 66.9 65.1 64.9 85.0 75.1 87.2

Table 1: User study: We report the % of human preference on ours vs. alternatives for overall quality
(OQ), style alignment (SA), and prompt alignment (PA), including ties where users couldn’t decide.
Our method consistently outperforms alternatives, achieving higher scores in all metrics.
Reference style StableCascade DirectConcat AFA only SOC only AFA + SOCContent prompt

�A cat�

�A piano�

Figure 4: Ablation study: Our method builds on any transformer-based diffusion model. In this
case, we use StableCascade [24] as the foundation, and sequentially add each module to show
their effectiveness. DirectConcat involves concatenating reference image embeddings with prompt
embeddings. Style descriptions are excluded in this ablation study.

of 7,200 answers (8 responses for each question). Each user answers 3 questions comparing our
method with an alternative method regarding (1) overall quality, (2) style alignment, and (3) prompt
alignment (details in the Appendix B.7). Table 1 summarizes the percentage of human preferences
for our method, the alternative method, or a tie. Our method consistently outperforms the alternatives,
including the most competitive method InstantStyle [13] in style alignment. The preference rates
over all three metrics highlight the effectiveness of our method RB-Modulation.

Quantitative analysis: Table 2 evaluates 300 prompts and 100 styles on the StyleAligned dataset [12]
using three metrics, with and without style descriptions in the prompts. Our method outperforms
others notably in the ImageReward metric, closely matching human aesthetics assessment from
the user study in Table 1. In addition, the CLIP-T score indicates our effective alignment between
generated images and text prompts. While IP-Adapter and StyleAligned have higher DINO scores,
their lower rating in ImageReward, CLIP-T and user preference expose information leakage from
the reference style images. Nevertheless, our DINO score remains competitive with the leading
method InstantStyle. Notably, all metrics show improvement with style descriptions, particularly
in ImageReward, where leveraging style descriptions enhances prompt alignment. Our method
achieves high ImageReward and CLIP-T score even without style descriptions, suggesting robustness
in prompt alignment without explicit style information in the prompt.

Ablation Study: Figure 4 shows an ablation study of the AFA and SOC modules adding new
capabilities to StableCascade [24]. We include a baseline, “DirectConcat”, which concatenates
reference style embeddings with text embeddings in the cross-attention modules. DirectConcat mixes
both embeddings, making it less effective in disentangling style from prompts (e.g., cat vs. lighthouse).
While AFA or SOC alone mitigates this by modulating the reverse drift and attention modules (§4),
each has drawbacks. AFA alone fails to capture the cat’s style accurately, and SOC alone misplaces
elements, like “a lighthouse hat on the cat” and “a railroad trunk on a piano”. We observe consistent
improvements with each module, with the best results when combined. Quantitative analysis is
omitted due to the lack of suitable metrics for information leakage, as detailed in Appendix B.5.

6.2 Content-Style Composition

Qualitative analysis: Content-style composition aims to preserve the essence of both content and
style depicted in the reference images, while ensuring the resulting image aligns with a given text
prompt. Figure 5 compares our method against training-free InstantStyle [13], IP-Adapter [21],
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ImageReward ↑ CLIP-T score ↑ DINO score
With style description? No Yes No Yes No Yes

IP-Adapter [21] -1.99 -1.51 0.21 0.26 0.89 0.89
StyleAligned [12] -0.68 0.01 0.26 0.31 0.80 0.85
InstantStyle [13] 0.09 0.72 0.29 0.33 0.68 0.72
RB-Modulation (ours) 0.91 1.18 0.30 0.34 0.68 0.73

Table 2: Quantitative results for stylization: We compare alternative methods on three metrics:
ImageReward [5] and CLIP-T [44] for prompt alignment, DINO [48] for style alignment. Note that
DINO score does not capture information leakage, so higher scores are not necessarily better (§B.5).
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(a) �A dog dancing on a table near the river� (b) �A sloth walking on the street� (c) �A cat walking�
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Figure 5: Qualitative results for content-style composition: Our method shows better prompt
alignment and greater diversity than training-free methods IP-Adapter [21] and InstantStyle [13], and
have competitive performance with training-based ZipLoRA [10] .

ImageReward ↑ CLIP-T score ↑ DINO score CLIP-I score

IP-Adapter [21] -0.78 0.22 0.73 0.68
InstantStyle [13] -0.54 0.21 0.71 0.71
RB-Modulation (ours) 0.74 0.26 0.74 0.71

Table 3: Quantitative results for composition: In addition to the metrics used for stylization, we
use CLIP-T score [44] to evaluate content alignment with the reference content. Similar to DINO,
CLIP-I could inflate test score [11, 10] by capturing content leakage, but not necessarily preferred by
users; higher DINO and CLIP-I scores do not mean better human preference.

and training-based ZipLoRA [10]. Notably, the training-free InstantStyle and IP-Adapter rely on
ControlNet [22], which often constrains their ability to accurately follow prompts for changing the
pose of the generated content, such as illustrating “dancing” in Figure 5(b), or “walking” in (c). In
contrast, our method avoids the need for ControlNet or adapters, and can effectively capture the
distinctive attributes of both style and content images while adhering to the prompt to generate diverse
images. In Figure 5(a), our method accurately captures elements like “table” and “river” that are
overlooked in InstantStyle and IP-Adapter. In addition, our method mitigates information leakage,
as evidenced in Figure 5(b), where the trunk of the tree behind the sloth is erroneously captured by
InstantStyle and IP-Adapter but not by ours. Compared to ZipLoRA [10] that requires training of
12 LoRAs [9] and additional merge layers for each composition, our method requires no training at
all while yielding competitive or better results. For instance, our method effectively captures the 2D
cartoon and 3D rendering styles as illustrated in Figures 5(a) and (b).

Quantitative analysis: Table 3 shows quantitative evaluation using 50 styles from StyleAligned
dataset [12] and 5 contents from DreamBooth dataset [7]. Unlike prior works [12, 11, 10, 7, 14]
reporting either DINO and CLIP-I scores, we present both metrics and demonstrate comparable
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performance across them. Additionally, we obtain notably higher ImageReward score, which aligns
closely with human aesthetics assessment as evidenced in §6.1 and [5]. Consequently, we omitted a
user study in this section. For more details, please refer to Appendix B.1.

7 Conclusion

We introduced Reference-Based modulation (RB-Modulation), a training-free method for personaliz-
ing transformer-based diffusion models. RB-Modulation builds on concepts from stochastic optimal
control to modulate the drift field of reverse diffusion dynamics, incorporating desired attributes (e.g.,
style or content) via a terminal cost. Our Attention Feature Aggregation (AFA) module decouples
content and style in the cross-attention layers and enables precise control over both. In addition,
we derived theoretical connections between linear quadratic control and the denoising diffusion
process, which led to the creation of RB-Modulation. Empirically, our method outperformed current
state-of-the-art methods in stylization and content+style composition. To our best knowledge, this is
the first training-free personalization framework using stochastic optimal control, which marks the
departure from external adapters or ControlNets.

Limitation: We proposed a framework and demonstrated its efficacy by incorporating a style
descriptor [43] in a pre-trained diffusion model [24]. The inherent limitations of the style descriptor
or diffusion model might propagate into our framework. We believe these limitations can be addressed
by appropriate replacements of the descriptor or generative prior in a plug-and-play manner.

Acknowledgements: This research has been supported by NSF Grant 2019844, a Google research
collaboration award, and the UT Austin Machine Learning Lab. Litu Rout has been supported by
Ju-Nam and Pearl Chew Presidential Fellowship and George J. Heuer Graduate Fellowship.
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A Additional Theoretical Results

In this section, we restate the propositions more precisely and provide their technical proofs. First,
we recall standard terminologies from optimal control literature [34]. For 0 ≤ t0 ≤ t ≤ tN ≤ 1, the
cost function associated with the controller u(·) is defined by the integral:

V (u;x0, t0) =

∫ tN

t0

ℓ (Xu
t , u, t) dt+ h

(
Xu

tN

)
, Xu

t0 = x0, (4)

where ℓ(· · ·) denotes a scalar valued function of the state Xu
t , controller u(·), and instantaneous time

t. The value function V ∗(x0, t0) is defined as the minimum value of V (u;x0, t0) over the set of
admissible controllers U , i.e.,

V ∗ = V ∗(x0, t0) = min
u∈U

V (u;x0, t0) = min
u∈U

∫ tN

t0

ℓ (Xu
t , u, t) dt+ h

(
Xu

tN

)
, Xu

t0 = x0, (5)

which satisfies a Partial Differential Equation (PDE) given below in Theorem A.1.
Theorem A.1 (HJB Equation, [34, 45]). If V ∗ has continuous partial derivatives, then it must satisfy
the following PDE, also known as Hamilton-Jacobi-Bellman (HJB) equation:

−∂V ∗

∂t
(x, t) = min

u∈U

[
H (x,∇xV

∗ (x, t) , u, t) := ℓ (x, u, t) + (∇xV
∗ (x, t))

T
v (x, u, t)

]
.

Also, the Hamiltonian H (x,∇xV
∗ (x, t) , u, t), optimal controller u∗(t) and the state trajectory

x∗(t) must satisfy
min
u∈U

H (x∗(t),∇xV
∗ (x∗(t), t) , u, t) = H (x∗(t),∇xV

∗ (x∗(t), t) , u∗(t), t) .

A.1 Interpreting reverse-SDE as a solution to optimal control

For clarity, we restate the problem setup here and describe the main ideas from §4 in more details.
Problem setup: We discuss a standard approach to derive the optimal controller in a special case
of our control problem (2). We substitute t← 1− t to account for the time reversal in the reverse-
SDE (1). In this setup, Xu

0 ∼ N (0, Id) and Xu
1 ∼ pdata. We consider the following dynamic

without the Brownian motion:
dXu

t = v(Xu
t , u, t)dt, Xu

t0 = x0, (6)

where 0 ≤ t0 ≤ t ≤ tN ≤ 1 and v : Rd × Rd × [t0, tN ]→ Rd denotes the drift field. The optimal
controller u∗ can be derived by solving the Hamilton-Jacobi-Bellman (HJB) equation [34, 45], see
Appendix A for details. By certainty equivalence, the same u∗ applies to a more general case with
the Brownian motion [47], where

dXu
t = v(Xu

t , u, t)dt+ dWt, Xu
t0 = x0. (7)

Therefore, without loss of generality, we analyze the reverse dynamic in the absence of the Brownian
motion, and employ the same controller in more general cases with the Brownian motion.

Below, we consider a dynamical system whose drift field is chosen to minimize a transient trajec-
tory cost and a terminal cost (weighted by γ) that enforces “closeness” to reference content x1.
Proposition A.2 provides the structure of the optimal control in the limiting setting where γ →∞.
Furthermore, suppose we replace x1 with its conditional expectation (discussed in Remark A.3),
the resulting dynamic, interestingly, is the standard reverse-SDE for the Orstein-Uhlenbeck (OU)
diffusion process. This connection between optimal control (more precisely, classic Linear Quadratic
Control) and the standard reverse-SDE provides us a path to study other diffusion problems (e.g.
personalization [7, 12, 11, 13], image editing or inversion [18, 15, 16, 17, 49]) through the lens of
stochastic optimal control.
Proposition A.2 (Linear optimal control with quadratic cost [47]). Consider the control problem:

min
u∈U

∫ 1

t0

1

2
∥u(Xu

t , t)∥
2
dt+

γ

2
∥Xu

1 − x1∥22 ,

where dXu
t = u(Xu

t , t) dt, Xu
t0 = x0

Then, in the limit when γ → ∞, the optimal controller is given by u∗ =
x1−Xu

t

1−t , which yields

dXu
t =

x1−Xu
t

1−t dt for the deterministic case and dXu
t =

x1−Xu
t

1−t dt+ dWt for the stochastic case.
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The optimal controller for the problem presented in Proposition A.2 can be derived using established
techniques from control theory [34, 45, 46]; the specific form of the above result follows from [47]
(but without their momentum term). The key steps in this derivation include: (1) computing the
Hamiltonian, (2) applying the minimum principle theorem to derive a set of differential equations,
and (3) taking the limit as γ → ∞. These three steps are fundamental in deriving a closed-form
solution. The final step is critical for satisfying hard terminal constraint and is essential for the
practical implementation of Algorithm 1 and Algorithm 2, as detailed in §4.

For generative modeling, the controlled dynamics described in Proposition A.2 cannot be directly
applied. This limitation arises because the optimal control u∗ depends on the terminal state x1,
making it non-causal or reliant on future information. Inspired by recent advancements in flow-based
generative models [50, 51], we make the optimal controller causal by replacing the terminal state
with its conditional expectation given the current state, i.e., , i.e. x1 ← E[Xu

1 |Xu
t = xt]. This

modification results in a controlled dynamic that can be simulated to produce a generative model
incorporating principles from optimal control, as elaborated in Remark A.3.
Remark A.3 (Connections between diffusion-based generative modeling and stochastic optimal
control). Following conditional diffusion models and optimal transport paths [50, 51], where Xf

t =

tXf
0 +(1−t)ϵ, the state variable Xu

t is equal in distribution to Xf
1−t = (1−t)Xf

0 +tϵ, ϵ ∼ N (0, Id)
after time reversal. Now, we use Tweedie’s formula [52] to compute the posterior mean:

E[Xu
1 |Xu

t ] =
Xu

t

1− t
+

t2

1− t
∇ log p (Xu

t , 1− t) . (8)

Substituting the posterior mean in the controlled reverse dynamic of Proposition A.2, we arrive at

dXu
t =

(E[Xu
1 |Xu

t ]−Xu
t )

(1− t)
dt+ dWt

=
[ t

(1− t)2
Xu

t +
t2

(1− t)2
∇ log p(Xu

t , 1− t)
]
dt+ dWt.

We observe that the above equation is structurally the same as reverse-SDE associated with a forward
Orstein-Uhlenbeck (OU) diffusion process. This relation between diffusion-based generative models
and optimal control is further explored in the Appendices below.

Indeed, diffusion models [53, 54, 3, 23, 24] provide an effective approximation to the terminal state
of a denoising process. This approximation has been used for a variety of generative modeling tasks.
Also, the terminal state can be approximated using Tweedie’s formula [52] with a learned score
function [53] 1. By utilizing these pre-trained diffusion models, we can employ the connection to
optimal control as discussed above to develop practically implementable generative models that
incorporates terminal objectives such as style and personalization. Consequently, the subsequent
sections are dedicated to deriving the optimal controller assuming a known terminal state; we will
approximate this in practice using Tweedie’s formula as above.

A.2 Incorporating personalized style constraints through a terminal cost

In this section, we derive the optimal controller when we have access to the reference style features
y1 at the terminal time (instead of the content of the image encoded through x1).
Proposition A.4. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Given reference style features y1, consider the control problem:

min
u∈U

∫ 1

t0

1

2
∥u(Xu

t , t)∥
2
dt+

γ

2
∥AXu

1 − y1∥22 , (9)

where dXu
t = u(Xu

t , t) dt, Xu
t0 = x0, (10)

Then, in the limit when γ →∞, the optimal controller u∗ = (ATA)
−1

AT (y1−AXu
t )

1−t , which yields the
following controlled dynamic:

dXu
t =

(
ATA

)−1
AT (y1 −AXu

t )

1− t
dt. (11)

1Alternatively, when the reverse process is described by a probability flow ODE, a trained neural network
can directly predict the terminal state [20].
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Proof. We derive the closed-form solution of the optimal controller given a fixed terminal state
condition. This is similar to [47], where the reverse process is accelerated using momentum (see also
[46, 45] for further details on this approach). The distinction, however, lies in the treatment of the
terminal constraint. For completeness, we provide full details of the proof below.

To derive the closed-form solution2, recall from equation (5) that ℓ(xt,ut, t) = 1
2 ∥ut∥2 and the

terminal cost h(x1) =
γ
2 ∥Ax1 − y1∥2. Let pt represent ∇xV

∗(x, t) in Theorem A.1. Then, the
Hamiltonian of the control problem (9) is given by

H(xt,pt,ut, t) = ℓ(xt,ut, t) + pT
t ut

=
1

2
∥ut∥2 + pT

t ut.

Since the minimizer of the Hamiltonian is u∗t = −pt, the value function becomes

V ∗ = min
ut

H(ut,pt,ut, t) = H(ut,pt,u
∗
t , t) = −

1

2
∥pt∥2 . (12)

Now, we use minimum principle theorem [45] to obtain the following set of differential equations:

dxt

dt
= ∇pH (xt,pt,u

∗
t , t) = −pt; (13)

dpt

dt
= −∇xH (xt,pt,u

∗
t , t) = 0; (14)

xt0 = x0; (15)

ptN = ∇xh (xtN , tN ) = γAT (AxtN − y1) . (16)

Integrating both sides of (13), we have∫ 1

t0

dxt = −
∫ 1

t0

ptdt = −p (1− t0) , (17)

where the last equality is due to (14), which states that pt is a constant independent of time t. This
implies x1 = xt0 − p(1− t0). From (16), we know for tN = 1 that

p1 = γAT (Ax1 − y1)

= γ
(
ATA (x0 − p(1− t0))−AT y1

)
= γATAx0 − γATAp1(1− t0)− γAT y1 (18)

Rearranging (18) and solving for p1, we get

p1 = γ
(
I + γATA (1− t0)

)−1 (
ATAx0 −AT y1

)
=

(
I

γ
+ATA (1− t0)

)−1 (
ATAx0 −AT y1

)
= p (19)

Passing (19) through the limit γ →∞, we get

lim
γ→∞

p =

(
ATA

)−1 (
ATAx0 −AT y1

)
1− t0

. (20)

Therefore, the optimal control becomes u∗t = −p = − (ATA)
−1
(ATAxt−AT y1)
1−t , and the resulting

dynamical system is given by

dxt =

(
ATA

)−1
AT (y1 −Axt)

1− t
dt,

for the deterministic process and

dxt =

(
ATA

)−1
AT (y1 −Axt)

1− t
dt+ dWt,

for the stochastic process with the Brownian motion. This completes the statement of the proof.
2With slight abuse of notation, we use xt to denote Xu

t and ut to denote u(Xu
t , t) in the deterministic case.
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Implications: The optimal controller depends on the reference style features y1 at the terminal time
(instead of the image content x1 as in Appendix A.1). The reverse dynamic can be simulated in
practice by using CSD [43] as a style feature extractor and replacing y1 with the extracted style
features from the expected terminal state E[Xu

1 |Xu
t ], as discussed in Remark A.3. This makes the

controller drift causal and non-anticipating future information.

A.3 Incorporating personalized style constraint through modulation and a terminal cost

In this section, we study a control problem where the velocity field is a linear combination of the
state and the control variable. This problem is interesting to study because of the following reason.
The reverse-SDE dynamic of the standard OU process has a drift field of the form:

v (Xt, t) = −Xt − 2∇ log p(Xt, t).

For a Gaussian prior X0 ∼ N (0, I), the law of the OU process satisfies∇ log p (Xt, t) = −Xt, and
the corresponding drift field becomes v (Xt, t) = Xt. Our goal is to modulate this drift field using
a controller u (Xu

t , t). The result below provides the structure of the optimal control (again in the
setting where the terminal objective is known; see Appendix A1).

Proposition A.5. Suppose A ∈ Rk×d be a linear style extractor that operates on the terminal state
Xu

1 ∈ Rd. Let pt denote ∇xV
∗(x, t) in HJB equation (A.1). Given reference style features y1,

consider the control problem:

min
u∈U

∫ 1

t0

1

2
∥u(Xu

t , t)∥
2
dt+

γ

2
∥AXu

1 − y1∥22 , (21)

where dXu
t = [Xu

t + u(Xu
t , t)] dt, Xu

t0 = x0, (22)

Then, the optimal controller becomes u∗(t) = −pt, where the instantaneous state Xu
t = xt and pt

satisfy the following:[
xt

pt

]
=

[
x0e

t − γ
2A

T (Ax1 − y1) e
1+t + γ

2A
T (Ax1 − y1) e

1−t

γAT (Ax1 − y1) e
1−t

]
.

Proof. The proof of Proposition A.5 is similar to Proposition A.4. One key distinction is the
set of differential equations obtained using minimum principle theorem [45]. We begin with the
Hamiltonian:

H(xt,pt,ut, t) = ℓ(xt,ut, t) + pT
t (ut + xt)

=
1

2
∥ut∥2 + pT

t ut + pT
t xt,

which gives us the minimizer of the Hamiltonian u∗t = −pt and its value function becomes
V ∗ = minut H(ut,pt,ut, t) = H(ut,pt,u

∗
t , t) = − 1

2∥pt∥2 + pT
t xt. By the minimum principle

theorem [45],

ẋt :=
dxt

dt
= ∇pH (xt,pt,u

∗
t , t) = −pt + xt; (23)

ṗt :=
dpt

dt
= −∇xH (xt,pt,u

∗
t , t) = −pt; (24)

xt0 = x0; (25)

ptN = ∇xh (xtN , tN ) = γAT (AxtN − y1) . (26)

This leads to a coupled system of differential equations with boundary conditions as given below:[
ẋt

ṗt

]
=

[
1 −1
0 −1

] [
xt

pt

]
;

xt0 = x0;

p1 = γAT (Ax1 − y1) .
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This can be solved numerically using ODE solvers, see [34, 45] for details. Denote q̇t =

[
ẋt

ṗt

]
and M =

[
1 −1
0 −1

]
. We seek a solution of the form q(t) = qeλt. If q(t) is a solution of the above

problem, then it must satisfy the following eigen value problem:

qeλtλ = Mqeλt. (27)

Writing the characteristic polynomial of (27), we get det (M− λI) = 0, which gives the eigen values
λ = {1,−1}. Substituting these eigen values, we have[

0 −1
0 −2

] [
q1
q2

]
= 0,

[
2 −1
0 0

] [
q1
q2

]
= 0,

which gives two fundamental solutions. By combining these two, we obtain the final solution[
xt

pt

]
= ω

[
1
0

]
et + ξ

[
1
2

]
e−t,

where ω and ξ can be found using the boundary conditions. Since x0 = x0 and p1 =
γAT (Ax1 − y1), we get ω = x0 − γ

2A
T (Ax1 − y1) e and ξ = γ

2A
T (Ax1 − y1) e. Substitut-

ing the values of ω and ξ, we arrive at[
xt

pt

]
=

[
x0e

t − γ
2A

T (Ax1 − y1) e
1+t + γ

2A
T (Ax1 − y1) e

1−t

γAT (Ax1 − y1) e
1−t

]
.

This completes the proof of the proposition.

Summary: Though Appendices A.1-A.3, we have seen the connection between optimal control
and diffusion based generation with a personalized terminal constraint. The general strategy has
been to derive the optimal controller with known terminal state, and then replace the terminal state
in the controller with its estimate using Tweedie’s formula. While the controllers so far have an
explicit form, in practice, the data distribution is not Gaussian, and thus, we do not have a closed-form
expression for the drift of the controller.

This line of analysis, however, points to our method RB-Modulation. As discussed in §4, we
incorporate a consistent style descriptor in our controller’s terminal cost and numerically evaluate the
drift of the controller at each reverse time step either through back propagation through the score
network, or an approximation based on proximal gradient updates.

B Additional Experimental Evaluation

B.1 Implementation details

Baselines: We demonstrate the applicability of our method RB-Modulation with StableCascade [24]
(released before April 2024). To our best knowledge, RB-Modulation is the first framework that
introduces new capabilities to StableCascade by incorporating SOC and AFA modules. Since there are
no existing training-free personalization baselines designed for StableCascade, we seek alternatives
built on other comparable state-of-the-art models such as SDXL [23] and Muse [55]3.

Among alternate training-free baselines, InstantStyle [13] does not directly apply to StableCascade
because it requires feature injection into specific layers of an IP-Adapter, which is not available for
StableCascade. Similarly, StyleAligned [12] relies on DDIM inversion, which is currently applicable
only to single-stage diffusion models. In contrast, StableCascade utilizes a two-stage diffusion
process, making the application of standard DDIM inversion [20] infeasible. We run the official
source code for InstantStyle4 and StyleAligned5. In the absence of a style description, we use “image

3Note that StableCascade and SDXL have comparable performance in prompt alignment whereas StableCas-
cade is more efficient due to a highly compressed semantic latent space [24].

4https://github.com/InstantStyle/InstantStyle
5https://github.com/google/style-aligned

18

https://github.com/InstantStyle/InstantStyle
https://github.com/google/style-aligned


Algorithm 2: Reference-Based Modulation (RB-Modulation) for large-scale generative models
Input: Diffusion time steps T , reference style image z0,

style descriptor Ψ(·), score network s(·, ·; θ)
Tunable parameters: Stepsize η, optimization steps M , proximal strength λ
Output: Personalized latent Xu

0
1 Initialize xT ← N (0, Id)

2 Initialize controller u ∈ Rd

3 for t = T to 1 do
4 Compute posterior mean E[Xu

0 |Xu
t = xt] =

xt√
ᾱt

+ (1−ᾱt)√
ᾱt

s (xt, t; θ)

5 Initialize optimization variable x0 = 0
6 for m = 1 to M do
7 Compute controller’s cost L(x0) := ∥Ψ(z0)−Ψ(x0)∥22 + λ∥x0 − E [Xu

0 |Xu
t = xt]∥22

8 Update optimization variable x0 = x0 − η∇x0
L(x0)

9 end
10 Compute previous state xt−1 = DDIM(x0,xt) [20]
11 end
12 return Xu

0

Reference Style

step size η
0 0.20.10.010.001

Optimization steps M
0 4321

�A dog wearing glasses�

�A running robot�

Figure 6: Qualitative results of different tunable hyperparameters: Improved style-prompt
disentanglement are shown when increasing to our best configurations optimization step size η = 0.1
and optimization steps M = 3.

in style” for DDIM inversion in StyleAligned. Following InstantStyle [13], we also compare with
IP-Adapter. We include the quantitative comparison in Table 2, and only compare qualitatively with
stronger baselines in Figure 3.

For completeness, we also compare with training-based baselines: StyleDrop [11] and ZipLoRA [10].
Since the official codebase for StyleDrop6 and ZipLoRA7 are not publicly available, we use the third-
party implementation and follow the training details in the corresponding papers. It takes 5 minutes
for training StyleDrop for 1000 steps and 20 minutes for training each LoRA for ZipLoRA. We train
each LoRA with only one reference image for both content and styles to make a fair comparison
with other methods. Similarly, we train StyleDrop with only one reference image. When a style
description is not provided, we follow the original paper [11] and use “in a [v*] style” instead.

Tunable parameters. Our method introduces only two hyper-parameters: stepsize η and optimization
steps M in Algorithm 1. We use DDIM sampling with η = 0.1 and M = 3 for all the experiments.

6https://github.com/aim-uofa/StyleDrop-PyTorch
7https://github.com/mkshing/ziplora-pytorch
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Reference style StyleAligned OursInstantStyle StyleAligned OursInstantStyle

(a) �A sofa in a infographic style� (b) �A sofa in a infographic style�

Figure 7: Impact of style descriptions in the prompt: (a) When style descriptions are provided, all
methods yield better results. (b) Without style descriptions (e.g., hard for users to describe in text),
alternative methods could struggle to capture the intended style in the reference image. Our method
offers consistent stylization even without explicit style descriptions.

Content-style composition. The prompt-guided content-style composition task introduces a new
layer of complexity beyond stylization §6.1. This task necessitates the disentanglement of the text
prompt, reference style image, and reference content image through additional conditioning. Such
complexity poses significant challenges for DDIM inversion [20] and attention caching mechanisms
[12] due to the inherent dependencies on multiple reverse paths.

Our AFA module effectively addresses these challenges. It manipulates transformer layers to easily
incorporate these additional conditions. The content information is integrated in a manner similar to
the style information. Specifically, we use a pre-trained ViT-L/14 model to extract content features in
the SOC framework and update the latent embeddings concurrently via the AFA module, using an
additional set of keys and values illustrated in Figure 2.

Furthermore, to better preserve the identity of the foreground content, we extract the desired content
using LangSAM8 based on the content prompt. This step is optional but offers more user control
when multiple subjects are present in the reference image.

B.2 Implementation using large-scale diffusion models

The exact implementation of our control problem (3) is given in Algorithm 1, which follows from
our theoretical insights. In practice, our controller encounters a challenge when the generative model
contains billions of parameters as in StableCascade [24] due to back propagation through the score
network, as discussed in §4. Our strategy to overcome this practical challenge involves a proximal
gradient update, given in Line 7-8 of Algorithm 2. To accelerate the sampling process, we run a
few steps (M = 3) of gradient descent after initializing x0 = E [Xu

0 |Xu
t = xt], resulting in only

two hyperparameters to tune: stepsize η and the number of optimization steps M . Further, since the
CSD model expects a clean image to extract style features, we apply the previewer model available
in StableCascade on the terminal state before extracting style features. After obtaining the final
personalized latent using our Algorithm 1 and Algorithm 2, we follow the decoding process as per
the inference pipeline of the adopted generative model.

B.3 Impact of hyperparameters on controlling style and content features

As detailed in §4 and the ablation study in §6.1, SOC helps disentangle the style and the prompt
information by updating the drift field in the standard reverse-SDE. We study the impact of the two
hyperparameters present in Algorithm 1 and Algorithm 2 that enables this disentanglement, as
shown in Figure 6. We found better disentanglement when the step size η = 0.1 and the number
of optimization steps M = 3. However, increasing the step size further results in style image
information leaking into the output (top row). Additionally, adding more optimization steps increases
computational overhead without yielding much performance gain (bottom row).

B.4 Style description in text prompts for better assimilation of unique styles

In addition to the quantitative analysis in §6.1, Figure 7 demonstrates that our method generates
consistent stylized results with and without the style description. In contrast, the alternatives fail
to accurately follow the prompt when the style description is absent. Although all results show

8https://github.com/luca-medeiros/lang-segment-anything
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Reference style StableCascade DirectConcat AFA only SOC only AFA + SOC

ImageReward

DINO score

CLIP-T

CLIP-I

ImageReward

DINO score

CLIP-T

CLIP-I

0.55 0.80 0.68 0.70 0.65

0.28 0.23 0.29 0.28 0.29

1.49 0.06 1.39 1.11 1.43

0.57 0.82 0.66 0.61 0.61

0.48 0.74 0.66 0.75 0.72

0.27 0.23 0.27 0.22 0.27

0.99 -1.63 0.17 -1.20 0.40

0.50 0.88 0.70 0.73 0.72

Figure 8: Comparison of different evaluation metrics: The StableCascade output is provided
for reference because it doesn’t use the reference style image. The highest score for each metric is
marked bold with underscore. We compare four metrics: ImageReward and CLIP-T score for prompt
alignment, DINO and CLIP-I score for style alignment. The prompt for the top row is “A cat” and for
the bottom row is “A piano”.

noticeable improvement when the style description is provided, it is often challenging for users to
describe styles in many real-world scenarios. We believe our early results by RB-Modulation will
pave the way for interesting future research along this direction.

We present additional qualitative results on stylization with (Figure 9) and without (Figure 10) style
descriptions using StyleAligned dataset [12]. Our results consistently align with the reference style
and the prompt, while other methods encounter several issues: (1) difficulty in following prompt
guidance, (2) information leakage from the style reference image, and (3) failure to achieve reasonable
prompt/style alignment in the absence of style descriptions.

B.5 Challenges of evaluation metrics in measuring style and content leakage

In §6, we discussed the limitations of metrics used in previous works [11, 12, 10], such as DINO
[48] and CLIP-I score [44]. To quantify these limitations, we use results from our ablation study
shown in Figure 4. As illustrated in Figure 8, DINO and CLIP-I scores are not well-suited for
measuring style similarity in the presence of content leakage. This is because images with high
semantic correlations to the reference style image consistently receive higher scores. For instance, in
the top row, although the last two columns visually align more closely with the isometric illustration
styles of the reference image, the DirectConcat output featuring a lighthouse receives higher scores.
The margin is particularly pronounced for CLIP-I score.

A similar observation can be made in the bottom row, where images containing train-related objects
receive higher scores regardless of their stylistic similarity. Conversely, images with less content
leakage (as seen in the last column) are assigned lower scores. This indicates that DINO and CLIP-I
scores prioritize semantic content over stylistic fidelity, thus failing to accurately measure style
similarity in scenarios where content leakage prevails.

On the other hand, our final method (last column), which combines AFA and SOC, demonstrates
high scores for both prompt alignment metrics: ImageReward [5] and CLIP-T [44]. This method also
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shows higher user preference, as evidenced in Table 1. In contrast, the DirectConcat results suffer
from information leakage and poor alignment with the prompt, resulting in significantly lower or
even negative reward scores.

In the ablation study, our primary focus is on the disentanglement of prompts and reference styles.
The conventional metrics fail to accurately reflect true performance due to information leakage.
Consequently, we emphasize qualitative demonstrations and place greater importance on user study
results, as shown in Table 1, similar to previous approaches [12, 11].

B.6 More qualitative results on stylization and content-style composition

We also showcase results on consistent style generation using user defined prompts in Figure 11. Our
results with different prompts consistently align with the styles while introducing various scenarios
following the prompts. The other methods face challenges like information leakage (e.g. hiking boots
and the monocular) and monotonous scenes (e.g. InstantStyle). Note that the original StyleDrop
paper [11] has mentioned its difficulty when training with one image without description. We keep
the results for completeness even though they are less satisfying. Besides, we also demonstrate more
qualitative results for content-style composition in Figure 13.

B.7 Human evaluation to discern highly subjective nature of style

We conduct a user study with 155 participants via Amazon Mechanical Turk using 100 styles from
the StyleAligned dataset [12]. The study requires no personally identifiable information of the
participants. There is no risk incurred and no vulnerable population. The standard guidelines have
been followed while conducting the user study.

We first provide participants with instructions to familiarize them with the relevant terminologies.
For each style, we randomly sample three outputs using three different prompts. Participants see two
rows of model outputs in random order (3 images per row) and answer 3 questions, as illustrated in
Figure 12.

1. In which row below, the images align better with the reference style image?

2. In which row below, the images align better with the reference text prompt above each
image?

3. In which row below, the images overall align better with the reference style image AND the
text prompt above each image AND with high quality?

For each question, participants choose one of three options. We collect 8 responses for each question,
with each question comparing our method against one of the alternatives. In total, we gathered 7,200
responses.

B.8 Failure cases of training-free stylization using RB-Modulation

In Figure 14, we illustrate stylization of different letters using a single reference style image. Although
our method captures the intended style and generates prompted letters, we notice that there is an
inherent tendency to generate upper-case letters (Figure 14 (a)), even though it is prompted to generate
lower-case letters. Upon further investigation, we observed that this issue stems from the underlying
generative model StableCascade, as shown in Figure 14 (b). This highlights a crucial limitation of
our method. As a training-free method, RB-Modulation shares a concern with other training-free
methods [13, 12, 14] that the performance is influenced by the original generative prior.

C Broader impact statement

Social impact: Image stylization and content-style composition based on diffusion models potentially
have both positive and negative social impact. This technology provides an easy-to-use tool to the
general public for image generation which can help visualize their artistic ideas. On the other hand,
our work on stylization and content-style composition poses a risk of generating arts that closely
mimic or infringe upon existing copyrighted material, leading to legal and ethical issues. More
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broadly, our method inherits the risks from T2I models which are capable of generating fake contents
that can be misused by malicious users.

Safeguards: We build on StableCascade [24], which has a mechanism to filter offensive image
generations. Since our method RB-Modulation builds on this pre-trained generative model, we inherit
these safeguards.
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Reference style Ours InstantStyle StyleAligned StyleDrop

�An airplane in watercolor painting style�

�A bowl of cornflakes in 3d rendering style�

�An elephant in wooden sculpture style�

�The letter A in abstract rainbow-colored flowing smoke wave design�

�A vintage camera in retro hipster style�

�A milkshake in 1950s dinner art style�

�A train in cafe logo style�

Figure 9: Additional qualitative results for stylization with style description: While the alternative
methods face challenges like following the prompts (e.g., multiple airplanes instead of an airplane)
and information leakage (e.g., the clouds on the cornflake bowl and the guitar in the milkshake image),
our method demonstrates strong performance on both prompt and style alignment. Style description
is in blue. 24



Reference style Ours InstantStyle StyleAligned StyleDrop

�A cat�

�A skyscraper�

�A leopard�

�A drum�

�A ladybug�

�A fireman�

�A winter evening by the fire�

Figure 10: Additional qualitative results for stylization without style description: StyleAligned
and StyleDrop show severe performance drop after removing the style descriptions (e.g., see fireman
and cat images). InstantStyle results show more information leakage (e.g., the pink ladybug and
leopard), whereas no obvious performance drop is observed in our results.
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Ours InstantStyle StyleAligned StyleDrop Ours InstantStyle StyleAligned StyleDrop

�A man reading a book in the park�

�A dog running in the park�

�A woman reading in the park�

�A soaring dragon�

Reference style Reference style

Figure 11: Additional qualitative results for consistent stylization for user defined prompts:
With no style description, our results demonstrate more diversity while following the styles and
prompts. InstantStyle results show monotonous scenes and StyleAligned results suffer from severe
information leakage. We report StyleDrop results for completeness and it is known to perform worse
with no style description and single training image [11].
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Figure 12: User study interface: Three randomly sampled outputs are shown for each method given
a style reference image, forming two rows of images. The users are asked to answer three questions
on (1) style alignment (2) prompt alignment and (3) overall alignment and quality.
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Reference styles

Reference styles

IP-Adapter

InstantStyle

Ours

Ref. content

IP-Adapter

InstantStyle

Ours

Ref. content

Figure 13: Additional qualitative results for content-style composition: Our results show better
prompt and style alignment while preserving reference content without leaking contents from the
reference style images (e.g. background of the first column and fruits in the last column,). Unlike
compared baselines, our method is not restricted to a fixed pose of the reference content image,
illustrating sample diversity.
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�r� �b� �m� �o� �d� �u� �l� �a� �t� �i� �o� �n�

Prompt: �A lower-case letter {}�

Reference style
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Figure 14: Failure cases for stylization: The top row shows the results of our method, RB-
Modulation, while the bottom row displays the results of the backbone, StableCascade. Notably,
the stylized images do not adhere to the prompt,“lower-case letter”. This highlights the limitations
imposed by the pre-trained generative priors on the capabilities of training-free personalization
models (top row).
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